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The Aircraft Morphing Program at NASA Langley

Research Center explores opportunities to improve

airframe designs with smart technologies. Two
elements of this basic research program are

multidisciplinary design optimization (MDO) and
advanced flow control. This paper describes examples

where MDO techniques such as sensitivity analysis,
automatic differentiation, and genetic algorithms

contribute to the design of novel control systems. In
the test case, the design and use of distributed shape-

change devices to provide low-rate maneuvering

capability for a tailless aircraft is considered. The

ability of MDO to add value to control system
development is illustraled using results from several

years of research funded by the Aircraft Morphing
Program.

Introduction

Researchers who specialize in multidisciplinary design

optimization (MI)O) and those who specialize in
optimal control have a natural affinity, since all use

mathematical optimization techniques. Yet, few
examples of MI)() research including flight control as

one of the disciplines exist. This apparent
contradiction stems from the traditional process of

designing aircraft flight control systems. Traditional

aircraft conceptual design (see for example Ref. 1)
assumes a small number of conventional control

devices: ailerons (roll effectorsl, elevator (pitch

effector), and rudder (yaw effector). The size and
location of these devices can be estimated b} using

historical databases for component weight and control
effectiveness information. The detailed control law

design is postponed until the aircraft configuration is

frozen and until precise control moments are measured
or predicted.

The Aircraft Morphing Program envisions ne_ types of
control devices, such as inflatable bladders or

oscillatory .jets distributed over the wing surface, _ hich

achieve control by changing the real or virtual shape of
the wing. 2 These novel control s_stems require an
equally revolutionary control design process. This

paper suggests that MDO techniques, such as

automatic differentiation for calculating sensitivities
and genetic algorithm (GA) optimization procedures,
are essential components of that new process.

Control System Design Process

The proposed control system design process is
illustrated b3 application to a tailless fighter aircraft

concept. The numerous control devices (effector
arrays) were m_xieled as generic shape-change devices

that respond immediately to commands from the
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controller.Thiskindof simplificationwasjustified
becausetheaim of the paper is to demonstrate MDO

techniques.

Figure I illustrates the proposed control system design

proc'css. In Fig. 1, the arrows indicate the flow of data
and the boxes represent steps in the design process.

For example, the first step is to develop the vehicle
concept and the final step is to develop and test the
control law. The arrow which connects the final box to

the initial box indicates that unsatisfactory results from

the control law design may necessitate changes in the

vehicle concept. In Fig. 1, the boxes with a dark border

represent steps where MDO techniques can add value.
The boxes with a light border represent steps where
engineering judgement is especially important. Each

step in the process is described in this section.

Development of Vehicle Concept

The first step in this multidisciplinary control system

design process was to create a computational fluid

dynamics (CFD) model of the vehicle and the control
devices. In the present research, generic shape-change
devices controlled a representative aircraft

configuration called ICE (Innovative Control
Effectors), created by Lockheed Martin _. The ICE

design, described in Refs. 3 and 4 and shown in Fig. 2,
was used under a cooperative agreement with
Lockheed Martin. The effectors were shape-change

devices modeled as bumps on the surface of the wing.

For the current proof-of-concept studies, existing grid

points were deformed in the direction of the surface
normal to represent potential shape-change devices.
The CFD model of the ICE configuration is evaluated

by an aerodynamic panel code called PMARC. 5

Prediction of Cotttrol Moments

The second step was to predict the sensitivities of the
control moments to a shape change at each grid point
of the CFD model. The sensitivities were obtained by
automatic differentiation of PMARC with the ADIFOR

code generation tool." The sensitivities required were

g,C_ OC,,, 8C,,/, the partial derivatives of roll (CO,7" ',,hj
pitch (C,,,), and yaw (C,,) moments with respect to a

displacement h. The details of calculating a surface
normal at evcry grid point and apply'ing a change in

height h along that normal are described by Park in

Ref. 7. For the present ICE configuration model, these
calculations required the derivatives of 3 outpu!

quantities with respect to 1394 input quantities.

Calculating such a large number of derivatives was
practical because of the adjoint option in version 3.0 of
the AI)IFOR software. _ Park estimates that he spent a

total of about one week modifying the PMARC codc

and applying ADIFOR-3.0. Calculating the
sensitivities required about one hour of CP[I time on a

high speed engineering workstation.

Given a 3xl394 matrix of partial derivatives for grid

locations on the right wing, the partial derivatives for
corresponding locations on the left wing were

constructed by' assuming the),' had same magnitudes but
the roll and yaw derivatives had opposite sign. Given

this matrix of all partial derivatives, the moments m
resulting from activation of any set of effectors was

estimated with a matrix multiplication:

,"It -- [ B]U mu (I)

where U,,,,d is an n-vector of device heights h and the

matrix B is constructed by' selecting the n columns
associated with those devices. Note that this methcxl of

estimating moments implies linear superposition,
which neglects control effector interactions. On the

other hand, if m,m d represents a vector of desired roll,

pitch, and yaw moments, then U,,,d can be calculated by
using the pseudo-inverse allocation method discussed
in Ref. 9:

U md BT[BBr] -l= m_,,,,d (2)

where T denotes the matrix transpose. As in Ref. 9,
heights were restricted to positive values less than

some maximum achievable device height. Therefore,
if any element of U,,,d was negative that element could

be set to zero, and the corresponding clement on the

opposite wing could be increased by, the same value.
Then the resulting vector was normalized so that thc

maximum element equaled the maximum achievable
device height. Finally, Eq. (1) was evaluated and the

target moments m,,,,_ were compared with the
achievable moments m.

Definition of Effector Array Candidates

The use of trademarks or names of manufacturers in

this report is for accurate reporting and does not
constitute an official endorsement, either expressed or

implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Equations (i) and (2) were used to estimate the control
moments produced by an array of effectors on the ICE

vehicle. An interactive design tool was created to let a

researcher quickly' build up and analyze potential
locations (i. e., effector arrays) by' selecting grid points

2
American Institute of Aeronautics and Astronautics



and assigning device heights. This interactive tool,
which uses MATLAB software developed by The

MathWorks, Inc., helps the control law designer to

determine good potential locations so that each device
can produce the forces and moments required to

maneuver the vehicle. Figure 3 illustrates the graphical

user interface for the MATLAB-based effector array
design tool. The wing planform on the left side of the

display presents the CFI) grid. The three contour plots
on the right side of the display present the sensitivity

data produced by step 2. The top contour plot indicates
roll moments on the top and bottom wing surfaces, the

middle plot indicates pitching moments, and thc

bottom plot indicates yaw moments.

Once an array of effectors were defined by, specifying
locations and heights, the designer obtained a

preliminary prediction of the arrays effcctiveness based
on Eqs. ( I ) and (2) and AI)IFOR sensitivities. Next, he

generated a perturbed geometry grid that included the

deployed effector array. This geometry, file could then
be reevaluated with the PMARC aerodynamic analysis

program. New sensitivity derivatives were calculated
based on the perturbed PMARC results. These

PMARC-based sensitivities could be used with Eqs. (1)

and (2) to further assess the effectiveness of the array'.
For the present study', perturbed device heights were

less than or equal to 0.2 feet.

Figure 4 displays a 17x41 grid of candidate device

locations on the right upper wing. Circles indicate one
selected effector array'. This array: contains 28 devices.

A right and left pair of these wing tip arrays can
provide the estimated roll, pitch, and yaw moments

shown in the first column of Table 1. Reanalysis of

these same devices with a deformed grid in PMAR(,
gives slightly' modified estimates shown in the second
column of Table I. In this way, 34 different effector

arrays were selected and evaluated. The two methods
of estimating moments were quite consistent: in

general the A1)IFOR estimates were smaller than the
PMARC estimates. Therefore, reliance on ADIFOR

estimates for optimization should produce a
conservative design.

Table I. Control Moment Estimates Compared with
PMARC Reanalvsis Results.

Moment ADIFOR PMARC

Roll - 1.44E-04 - 1.56E-0-1-

Pitch -2.02E-04 -2.20E-04

Yaw -0.22E-04 -0.28E-04

The PMARC estimates for the effector arrays are

plotted in Fig. 5. Estimates based on Eqs. (1) and (2),
with sensitivity information generated by ADIFOR,

would create a very similar plot. The candidate

effector arrays were located in 7 regions: on the upper
and lower leading edge (I,E), on upper and lower

trailing edge (TE), on upper and lower wing tips, and
on the upper surface near the middle of the wing. The

arrays were not necessarily' disjoint. In fact, some

devices were members of several effector arrays.

The ellipses in Fig. 5 indicate a suite of four effector
arrays that were studied in Ref. 9. This suite was used

in a six-degree-of-freedom dynamic simulation to
investigate the unaugmented and augmented aircraft

dynamics. Results of that simulation are reported in

Ref. 9 and indicate that a 10-degree-per-second roll
rate is the maximum achievable with this suite of

effectors. Those results suggest that this particular
suitc could be valuable for mild maneuvering or could

bc used in an autopiiot to keep the wings level but
could not take the place of conventional control
surfaces.

Selection of Optimal Effcctor Arrays

The manually selected effector suite studied in Ref. 9

required 82 individual devices and did not completely

meet the goals set by the designer. Given enough time
and good intuition, the designer might have selected
other effector suites with better characteristics.

Alternately., the initial exploration for candidate
effcctor suites can be accomplished _ith discrete

optimization techniques. For example, Ref. 10

contains a literature survey of actuator placement
research that indicates gocud results for a wide range of

applications.

With the MATLAB-based tool, the designer can define
a large number of arra3s and then can predict their

control moments by using the PMARC analysis code.
However, selecting the best set of arrays from this

potential pool is a combinatorial problem that can be
solved by using MDO techniques. The current study

selected a GA-based optimization approach. The goal
of the optimization was to reduce the number of

devices required and to satisfy control effectiveness
criteria. The GA is not suggested as a replacement for

the designer, but as a tool for screening potential
effcctor arrays and thus allowing the designer to

consider only the most promising.

A multilevel GA, used to select control device

locations, is described in Ref. I 1. The goal of the GA

is to select the minimum set of devices that can provide
the required uncoupled control moments (e. g., provide

sufficient pitching moment without adverse roll or
yaw). That GA technique was tuned and validated
with a simplified wing model, t H-_
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In the current study, the GA described in Ref. 11 was

adapted to select effector arrays on the ICE model.

Again, the objective was to find the minimum number
of devices required to provide uncoupled roll, pitch,

and yaw moments. Each member in the GA population
represented one possible effector suite. Each
individual was evaluated three times to determine roll,

pitch, and yaw moments and to compare these
achievable values with the target values. Failure to

meet any of these targets caused a penalty to be added
to the fitness (i. e., objective) function.

In Ref. 11, the penalty has a fixed size. After some
experimentation, a step-linear penalty was determined
to work better. Thus the fitness function, J, can be
written as follows:

this problem, the GA was allowed to pick at most one
array from each of the 7 regions shown in Fig. 5. "Ihe

GA implementation would be simplified if each region
had the same number of arrays. So, because the upper

TE region contained 8 arrays, arrays in the other

regions were duplicated until each region contained 8
arrays. In this way, the string length for the phase !

GA was set to 7 and each digit in the string could have
a value between 0 and 8. Thus, the number of possible

combinations was 9 7 (approximately 4,800,000),

although not all of these combinations represented
unique effector suites. The duplication of effector

arrays should not have had a significant impact on the
convergence of the GA. Although. duplication does

produce many members of the population with the

same fitness value, a GA is especially well suited for
optimization problems with this characteristic.

J=n+ w, +w,,,( cm +w,,

where n is the number of devices, w_ are the minimum

penalties, C_ are the moments and C,* are the targets.

For cases reported in this paper, w_ = 150 if the
moments are less than the targets (e. g., if C_ < C_* )
and w, = 0 otherwise. The number 150 is an

appropriate size for the minimum penalty because it

has the same order of magnitude as n judging from the
number of devices in the manually-selected suite.

Thus, the GA will be encouraged to drive all the
penalty terms to zero by choosing a sufficient number
of devices.

For the current study, the GA was developed and tested
in two phases. During phase 1, the 34 effector arrays

selected by Raney were defined as the set of possible
arrays. The GA was allowed to select up to 7 arrays

from the original 34. The effectiveness estimate for
each suite of effector arrays was based on the PMARC

reanalysis data used in Ref. 9. The target values (see
Eq. 3) were set to C/* = 6.0E-04, C,,,* = 5.0E-04, and

C,,* = 3.0E-04. During phase II, a set of 349

individual devices could be selected independently.
The effectiveness estimate for each stfite of devices

was based on the ADIFOR data. The target values for

phase I1 are set to Ct* = 5.0E-04, C,,,* = 5.0E-04, and

C,* = 1.0E-04; the targets were reduced because the

estimates based on ADIFOR data consistently
underestimated roll and yaw.

Obviously, phase 1 was a much smaller combinatorial

problem, but it had its own complications. For
example, some of the arrays overlapped and so not all

possible combinations were allowable. To circumvent

The GA population size for phase I was 200. An initial

population of members was produced randomly and
their fitness evaluated. Successive generations were

produced by the GA operations of tournament
selection, uniform crossover, and mutation, with a
mutation rate of 5%. The maximum number of

generations was set to 300. A single execution

consisting of 300 generations of the GA procedure
requires about one hour on a engineering workstation.

For complete descriptions of GA techniques and
definitions of GA parameters, see Ref. 13.

Typical results of the GA are shown in Fig. 6. Notice

that the scales on each figure are different in order to
emphasize several points about the convergence

history. Figure 6a shows the value of the fitness
function averaged over all population members in each

generation. The maximum and minimum fitness is also
plotted. Figure 6a shows clearly that the population

maintained adequate diversity for 300 generations.

Figure 6b shows the average and minimum fitness for
the first 20 generations. Notice that the average fitness
reduced dramatically over this interval and approached

the value of 150. This trend suggests that all members
of the population were converging towards designs
whose achievable moments were close to or better than

the target values. Figure 6c shows the best fitness ever

calculated as a function of generation number. Figure
6,: indicates the original population contained at least

one member with a fitness less than 150, suggesting

that some members met all the performance targets.
Notice also that the best individual had 96 devices and

was foufid before generation 20.

Even though 300 generations and about 60,000
different effector suites (i. e., about 1.25% of all

possible combinations) were evaluated by the GA,

apparently no combination with fewer than 96 devices
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cotdd be found. This global best design is pictured in
Fig. 7. The design had three arrays on the upper wing
surface and two on the lower surface for a total of 96

devices in 5 arrays as compared to 82 devices in 4

arrays selected by the manual method. However, this

96-device design met all the targets while those
selected by the manual method did not.

Based on encouraging results from phase I, the GA was
used to select individual devices from a set of 349.

This set contained all of the devices that made up the
34 arrays in phase 1, plus some other devices that

seemed promising.

The phase II GA was tested with a variety of crossover

strategies and mutation rates. A typical execution of
the phase II GA requires about 8 hours of CP[I time.

The choice of strategy does not seem to affect the
results or the efficiency very much. The results in Fig.

8 were produced with a single-point crossover and a
mutation rate of 1_.

The members of the phase II GA population were
initially assigned random numbers from 0 to 349. If"

the same random number was generated more than
once in any member, then all the duplicates were set to

zero. Duplicates were similarly set to zero following
crossover and mutation operations. The string length

was set to IO0, so the number of possible combinations

(,0O) ,0_,of 100 devices chosen from 349 was 349 ,-4x

Because the number of combinations was much larger

than in phase I, the population size was increased to

300 and the maximum number of generations was set
to 500. Thus, about 150,000 individual members were

evaluated during each repetition of the GA. This
number represented a tiny percentage of all possible
combinations.

Figure 8 shows typical convergence performance for

the GA. and Fig. 9 shows the 45 devices selected by
this execution of the GA. Notice in Fig. 8, that even

the "best ever" fitness value was initially above 500;
this high initial value means that all individuals in the

population were heavib penalized. After about 100

generations, the best fitness dropped sharpb, indicating
that a design meeting the targets had been found.

Simulation of the Control System

Several effector suites defined with the MATLAB-

based tool have been applied to the ICE vehicle in a

simulation and used in a stability augmentation and

control system design (Ref. 9). For the present study,
the control system deployed the effeclors in a

proportional fashion: each device in an effector arra5

was set to the same height. As greater moments were
required by the control system, the height of a given

effector array was increased until the limiting height

was reached. By using these arrays, the control system
was able to stabilize and maneuver the vehicle without

conventional moving surfaces such as ailerons or a
rudder. The predicted authority of these devices was

still rather low when compared with that of a rudder or

aileron, so the control system generated relatively love-
rate maneuvers (roll rates of 5 to 10 degrees per

second). Future research will focus on experimental
validation of the predicted authority of various flow
control devices and on better estimates of their

effectiveness.

Figure 10 contains time history plots comparing the
phase I GA suite (thick solid), the original manually-
selected suite (thin dashed), and the ideal moment

targets (thin solid). The roll and yaw moments coming

from the GA suite Icx)k very good-slightly better than

those from the original suite. Both suites cause an

undesired pitch perturbation (see Fig. 10b), but the GA
results in smaller pitch transients during the maneuver.

The crosswind gust capabilit) of the GA effector suite
was about the same as the original: the GA suite could

tolerate 29.5 ft/s crosswind gust, while the original
suite could withstand a 28 ft/s gust. From this analysis,

the phase I GA appears to have found a good solution.
Further testing is required to evaluate the phase II (iA
solution.

Concluding Remarks

This paper summarizes several years of research

supported by the Aircraft Morphing Program at NASA
l.angley Research ('enter. The paper emphasizes the
use of MDO techniques applied to the control system

design process for novel aircraft configurations. One
such novel aircraft concept is the Lockheed-Martin ICE

configuration with distributed shape-change devices to
generate control moments. Starting with a CFI) model

of the ICE configuration, this paper shows hmv the
control moments were estimated, promising effector

locations were proposed, optimal subsets of these
proposed locations were chosen and the control s3stem
was simulated and tested.

Obviously, the advanced flow control research is not

complete. The concepts must be tested in the wind
tunnel, and more effective shape-change devices must
be sought. Moreover, both CFD predictions and flight

control simulations need to be improved and validated.
These improved prediction capabilities may influence

the fitness function used for optimization as well as the
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implementation details used for automatic
differentiation.

While acknowledging that flow control research is in

its infancy, this paper demonstrates useful MDO
techniques that will be available to the control

designers of the future. The automatic differentiation
techniques demonstrated with the ICE model and

PMARC code are easily adaptable to other CFD
models and codes. Likewise, the genetic algorithms

developed herein can be used with improved control-
effectiveness measures to find the best locations for a

wide variety of shape-change effectors. Thus,

simulation techniques such as CFD, as well as MDO
techniques such as GA and automatic differentiation,

empower engineers to explore revolutionary control

concepts for aircraft of the future.

References

8. Carle, A., and
ADIFOR-3.0,"

1. Raymer, Daniel P., Aircraft Design: A
Conceptual Approach. AIAA, Washington, I)C,
1992.

2. Wlezien, R. W., Horner, G. C., McGowan, A. R.,

Padula, S. L., Scott, M. A., Silcox, R. J., and

Simpson, J. O., "The Aircraft Morphing Program,"

AIAA Paper 99-1927. Apr. 1998.

3. Scott, M., Montgomery, R., and Weston, R.,

"Subsonic Maneuvering Effectiveness of High
Performance Aircraft Which Employ Qtmsi-Static

Shape Change Devices," SPIE 1998 International
Symposium on Smart Structures and Materials,

Paper 3326-24, pp. 223-233.

4. Dorsett, K. M., and Mehl, D. R., "Innovative

Control Effectors (ICE)," Wright Laborator3:

Report, WL-TR-96-3043, Jan. 1996.

5. Ashby, D., Dudley, M., lguchi, S., Browne, L., and

Katz, J., "Potential Flow Theory and Operation
Guide for the Panel Code PMARC_12," NASA

Ames Research Center, Moffett Field, CA, Dec.
1992.

6. Carle, A., Fagan, M., and Green, L., "Preliminary
Results from the Application of Automated

Adjoint Code Generation to CFL3D," AIAA Paper
98-48078, Sept. 1998.

1. Park, M., Green, L., Montgomery, R., Raney, D.,

"Determination of Stability and Control
Derivatives using Computational Fluid Dynamics

and Automatic Differentiation," AIAA Paper
99-3136, June 1999.

Fagan, M., "Overview of
CAAM-TR 00-02, Rice

University, Department of Computational and
Applied Mathematics, Jan. 2000.

9. Raney, David L., Montgomery, Raymond C., Park,
Michael A., and Green, l,awrence L., "Flight

Control Using Distributed Shape-Change Effeclor

Arrays," AIAA Paper 2000-1560, Apr. 2000.

10. Padula, Sharon L., and Kincaid, Rex K.:

"Optimization Strategies for Sensor and Actuator
Placement," NASA TM- 1999-209126, Apr. !999.

1. Rogers, James L., "Optimum Actuator Selection

with a Genetic Algorithm for Aircraft Control,"
Intelligent Engineering Systems Through Artificial

Neural Networks, Vol. 9, edited by Dagli. Buczak,
Ghosh, Embrechts, and Ersoy, ASME Press, New

York, 1999, pp. 355-360.

12. Cook, A., and Crossley, W., "Genetic Algorithm
Approaches to Smart Actuator Placement for

Aircraft Flight Control," AIAA Paper 2000-1582,

Apr. 2000.

13. Goldberg, 1)., Genetic Algorithms in Search,

Optimization and Machine Learning, Addison-

Wesley Publishing Co., New York, 1989.

6
American Institute of Aeronautics and Astronautics



Fi__..._.l re s

Develop

vehicle _1_concept

.........................................................._.......................................................IIFrom CFD model

Predict control
moment

sensitivities

Fig. 1

i,

Define
i !i

effector array
candidates

Control system design pr_xzess.

Use GA to

select

best arrays
........... _ 1_ ,

Simulate and
test controls

7

American Institute of Aeronautics and Astronautics



Area - 75.12.m 2 (808.6ft 2)

Span - 11.43m (37.5ft)
Aspect Ratio - 1.74
LE sweep - 1.134 rad (65 deg)

Fig. 2 Lockheed-Martin Innovative Control Effector (ICE) configuration.

Fig. 3 Effector array design tool graphical user interface.
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to a +/- 20-deg bank angle doublet command.
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